organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(3-Oxocyclohex-1-envl)benzoic acid

Flaviana T. Vieira,^a Daniele C. Menezes,^a Geraldo M. de Lima^a and Nivaldo L. Speziali^{b*}

^aDepartamento de Química, ICEx–UFMG, Brazil, and ^bDepartamento de Física, ICEx-UFMG, Brazil Correspondence e-mail: nspezial@fisica.ufmg.br

Received 30 May 2007; accepted 19 June 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.046; wR factor = 0.132; data-to-parameter ratio = 7.4.

The title compound, C₁₃H₁₃NO₃, crystallizes with two molecules in the asymmetric unit. The values of the relevant C-C, C=C and C-N bond lengths indicate that the molecules exist in the enamine tautomeric form. In each molecule, the cyclohexene ring adopts a slightly distorted envelope conformation. Molecules are linked by intermolecular O-H···O hydrogen bonds between carboxyl and C=O groups. There is also an intramolecular N-H···O hydrogen bond in each molecule.

Related literature

For related literature, see: Allen (2002); Strozhev & Lielbriedis (1990).

Experimental

Crystal data

C13H13NO3 $M_r = 231.24$ Orthorhombic, Pna21 a = 11.3867 (11) Åb = 13.0719 (9) Å c = 15.3389 (14) Å

V = 2283.2 (3) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^-$ T = 293 (2) K $0.2 \times 0.2 \times 0.2 \ \text{mm}$

Data collection

Siemens P4 diffractometer Absorption correction: none 2549 measured reflections 2266 independent reflections 1800 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	1 restraint
$wR(F^2) = 0.132$	H-atom parameters constrained
S = 0.93	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
2266 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$
307 parameters	

 $R_{\rm int} = 0.015$

3 standard reflections

every 247 reflections

intensity decay: 4%

Table 1

Selected bond lengths (Å).

C1-N	1.407 (5)	C1'-N'	1.396 (5)
N-C7	1.359 (5)	N'-C7'	1.366 (5)
C7-C12	1.364 (5)	C7′-C12′	1.358 (5)
C11-C12	1.433 (5)	C11′-C12′	1.425 (5)

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2O\cdots O3'$	0.82	1.81	2.562 (4)	151
$N-H1\cdots O1$	0.86	1.98	2.665 (4)	136
$O2' - H2O' \cdots O3^{i}$	0.82	1.78	2.562 (4)	160
$N' - H1' \cdots O1'$	0.86	1.98	2.659 (4)	135

Symmetry code: (i) x, y + 1, z.

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

This work was partially supported by the Brazilian agencies CAPES, CNPq and FAPEMIG.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2148).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1991). XSCANS (Version 5.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Strozhev, M. F. & Lielbriedis, I. (1990). Khim. Get. Soedin. 7, 947-949.

Acta Cryst. (2007). E63, o3376 [doi:10.1107/S1600536807029959]

2-(3-Oxocyclohex-1-enyl)benzoic acid

F. T. Vieira, D. C. Menezes, G. M. de Lima and N. L. Speziali

Comment

The preparation of the title compound has been reported in the literature in a condensation reaction with isopropylidene malonate (Strozhev & Lielbriedis, 1990). The compound was obtained in 37% yield and no X-ray crystallographic determination has hitherto been performed. A search of the Cambridge Structural Database (Version 5.28; Allen, 2002) yielded no hits.

The title compound crystallizes with two molecules per asymmetric unit. In each molecule the cyclohexene ring adopts a slightly distorted envelope conformation, with C9 and C9' as flap atoms. The bond distances C1—N, N—C7, C7=C12, C12—C11, C1'—N,' N'—C7', C7'=C12' and C12'—C11' (Table 1 and Fig. 1) clearly indicate that the enamine tautomer is present in the crystal structure, rather than the imine normally expected from a Schiff base reaction. The C—N—C bond angles, $131.6 (3)^{\circ}$ and $130.7 (3)^{\circ}$, are typical of Nsp³.

The X-ray crystallographic determination has revealed that the title compound exists in the solid state in a pseudo-polymeric arrangement, held together by intermolecular O—H···O hydrogen bonds. These connect carboxyl and C=O groups of neighbouring molecules.

Experimental

To a round-bottomed flask charged with 2-aminobenzoic acid (2.74 g, 0.02 mol) dissolved in methanol (20 ml) was slowly added a solution of 1,3-cyclohexadione (2.24 g, 0.02 mol) in 20 ml of methanol. The mixture was refluxed and stirred for 4 h; it was observed that the colour changed from colourless to yellow. The solution was cooled to room temperature and the solvent was removed in vacuum; the yellow solid was washed with diethyl ether. X-ray quality crystals were obtained after slow evaporation of a methanol/water (9:1) solution. Yield 75%. IR (v/cm^{-1}): 1376 (v_{C-N}). ¹H-NMR: (δ): 7.97–7.92 d (C3), 7.4 m (C5, C6), 7.09 t (C4), 2.51–2.48 m (C11), 2.26–2.27 m (C9), 1.95–1.92 m (C10). ¹³C-NMR (δ): 201. 9 (C12), 170.4 (C1), 165.4 (C8), 141.9 (C7), 134.6 (C3), 133.6 (C5), 125.5 (C6), 124.64 (C4), 122.58 (C2), 100.94 (C13), 37.12 (C11), 31.07 (C9), 22.92 (C10). Elemental analysis(%) for C₁₃H₁₃NO₃ found (calc.): C 67.21 (67.52), H 5.43 (5.66), N 5.96 (6.05).

Refinement

Most H atoms were detected in a Fourier difference map; nevertheless, their positions were subsequently calculated and they were constrained to ride on their parent atoms, with O—H = 0.82 Å, N—H = 0.86 Å, C—H = 0.93 Å for Csp^2 and C—H = 0.97Å for methylene. $U_{iso}(H) = xU_{eq}$ (carrier atom), where x = 1.2 for C, N and 1.5 for O. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom-numbering scheme and the intermolecular hydrogen bond (dashed line) Displacement ellipsoids are drawn at the 50% probability level.

2-(3-Oxocyclohex-1-enyl)benzoic acid

Crystal	data

C ₁₃ H ₁₃ NO ₃	$D_{\rm x} = 1.345 \ {\rm Mg \ m}^{-3}$
$M_r = 231.24$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Orthorhombic, <i>Pna</i> 2 ₁	Cell parameters from 38 reflections
a = 11.3867 (11) Å	$\theta = 4.8 - 12.5^{\circ}$
<i>b</i> = 13.0719 (9) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 15.3389 (14) Å	T = 293 (2) K
V = 2283.2 (3) Å ³	Prismatic, colorless
Z = 8	$0.2\times0.2\times0.2~\text{mm}$
$F_{000} = 976$	

Data collection

Siemens P4 diffractometer	$R_{\rm int} = 0.015$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.1^{\circ}$
T = 293(2) K	$h = -1 \rightarrow 13$
ω / 2 θ scans	$k = -3 \rightarrow 15$
Absorption correction: none	$l = -4 \rightarrow 18$
2549 measured reflections	3 standard reflections
2266 independent reflections	every 247 reflections
1800 reflections with $I > 2\sigma(I)$	intensity decay: 4%

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.046$	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.132$	$(\Delta/\sigma)_{\rm max} = 0.018$
<i>S</i> = 0.93	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$

2266 reflections $\Delta \rho_{min} = -0.25 \text{ e Å}^{-3}$ 307 parametersExtinction correction: none1 restraintPrimary atom site location: structure-invariant direct
methodsSecondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.5835 (3)	0.4550 (2)	0.7105 (2)	0.0678 (9)
O2	0.4210 (2)	0.4172 (2)	0.7836 (2)	0.0644 (9)
H2O	0.4113	0.4792	0.7804	0.097*
C13	0.5183 (3)	0.3924 (3)	0.7441 (3)	0.0452 (9)
C6	0.5421 (3)	0.2797 (3)	0.7469 (2)	0.0402 (8)
C5	0.4676 (3)	0.2177 (3)	0.7959 (3)	0.0465 (9)
Н5	0.4034	0.2471	0.8238	0.056*
C4	0.4865 (3)	0.1147 (3)	0.8043 (3)	0.0502 (10)
H4	0.4359	0.0743	0.8373	0.060*
C3	0.5822 (3)	0.0721 (3)	0.7627 (3)	0.0499 (10)
Н3	0.5964	0.0024	0.7688	0.060*
C2	0.6568 (3)	0.1297 (3)	0.7128 (2)	0.0426 (8)
H2	0.7204	0.0990	0.6852	0.051*
C1	0.6372 (3)	0.2350 (3)	0.7033 (2)	0.0376 (8)
Ν	0.7126 (3)	0.2982 (2)	0.6544 (2)	0.0455 (8)
H1	0.7075	0.3621	0.6671	0.055*
C7	0.7918 (3)	0.2764 (3)	0.5909 (2)	0.0403 (8)
C8	0.8719 (3)	0.3646 (3)	0.5703 (3)	0.0443 (9)
H8A	0.9332	0.3678	0.6142	0.053*
H8B	0.8273	0.4277	0.5736	0.053*
C9	0.9286 (4)	0.3574 (3)	0.4812 (3)	0.0530 (11)
H9A	0.9899	0.4086	0.4760	0.064*
H9B	0.8704	0.3704	0.4364	0.064*
C10	0.9808 (4)	0.2511 (3)	0.4687 (3)	0.0519 (11)
H10A	1.0105	0.2450	0.4096	0.062*
H10B	1.0464	0.2424	0.5083	0.062*
C11	0.8926 (3)	0.1686 (3)	0.4848 (3)	0.0394 (8)

C12	0.8009 (3)	0.1860 (3)	0.5470 (3)	0.0400 (8)
H12	0.7463	0.1346	0.5577	0.048*
O3	0.9019 (2)	0.08747 (19)	0.4442 (2)	0.0554 (7)
O1'	0.6639 (3)	0.9504 (2)	0.5383 (2)	0.0723 (10)
O2'	0.8124 (2)	0.9080 (2)	0.4533 (2)	0.0649 (9)
H2O'	0.8278	0.9690	0.4585	0.097*
C13'	0.7225 (3)	0.8857 (3)	0.5014 (3)	0.0429 (9)
C6'	0.6979 (3)	0.7738 (3)	0.5042 (2)	0.0382 (8)
C5'	0.7693 (3)	0.7071 (3)	0.4574 (2)	0.0453 (9)
H5'	0.8350	0.7327	0.4288	0.054*
C4'	0.7451 (3)	0.6040 (3)	0.4525 (3)	0.0484 (9)
H4'	0.7951	0.5602	0.4223	0.058*
C3'	0.6461 (4)	0.5666 (3)	0.4926 (3)	0.0505 (10)
H3'	0.6276	0.4976	0.4874	0.061*
C2'	0.5738 (3)	0.6299 (3)	0.5405 (3)	0.0483 (10)
H2'	0.5075	0.6029	0.5675	0.058*
C1'	0.5988 (3)	0.7339 (3)	0.5491 (3)	0.0393 (8)
N'	0.5268 (2)	0.8004 (2)	0.5962 (2)	0.0455 (8)
H1'	0.5340	0.8638	0.5824	0.055*
C7'	0.4468 (3)	0.7814 (3)	0.6606 (2)	0.0382 (8)
C8'	0.3695 (3)	0.8713 (3)	0.6803 (3)	0.0442 (9)
H8'A	0.3073	0.8746	0.6372	0.053*
H8'B	0.4155	0.9336	0.6755	0.053*
C9'	0.3153 (4)	0.8663 (3)	0.7703 (3)	0.0522 (10)
H9'A	0.2570	0.9199	0.7766	0.063*
H9'B	0.3754	0.8766	0.8142	0.063*
C10'	0.2581 (3)	0.7627 (3)	0.7830 (3)	0.0554 (12)
H10C	0.2285	0.7577	0.8421	0.066*
H10D	0.1918	0.7566	0.7436	0.066*
C11'	0.3422 (3)	0.6767 (3)	0.7664 (2)	0.0408 (8)
C12'	0.4342 (3)	0.6921 (3)	0.7048 (3)	0.0414 (8)
H12'	0.4872	0.6393	0.6946	0.050*
O3'	0.3271 (2)	0.5937 (2)	0.8042 (2)	0.0561 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0716 (18)	0.0402 (15)	0.092 (2)	0.0011 (13)	0.0372 (18)	0.0043 (16)
O2	0.0588 (17)	0.0435 (16)	0.091 (2)	0.0050 (13)	0.0285 (17)	-0.0018 (16)
C13	0.0461 (19)	0.045 (2)	0.045 (2)	0.0024 (17)	0.0071 (18)	-0.0055 (18)
C6	0.0461 (19)	0.0359 (18)	0.038 (2)	-0.0023 (17)	-0.0044 (17)	-0.0062 (17)
C5	0.049 (2)	0.041 (2)	0.049 (2)	-0.0028 (17)	0.0085 (19)	0.0007 (18)
C4	0.060 (2)	0.044 (2)	0.046 (2)	-0.0035 (18)	0.008 (2)	0.0064 (18)
C3	0.063 (2)	0.0385 (19)	0.048 (2)	0.0012 (17)	-0.007 (2)	0.0031 (18)
C2	0.0444 (19)	0.0402 (19)	0.043 (2)	0.0068 (15)	-0.0017 (17)	-0.0013 (17)
C1	0.0384 (17)	0.0371 (17)	0.037 (2)	-0.0025 (14)	-0.0024 (17)	-0.0030 (16)
Ν	0.0464 (17)	0.0346 (15)	0.0555 (19)	-0.0008 (13)	0.0066 (15)	-0.0099 (15)
C7	0.0339 (17)	0.0378 (17)	0.049 (2)	-0.0029 (14)	-0.0030 (16)	-0.0041 (18)

C8	0.0448 (19)	0.0363 (18)	0.052 (2)	-0.0058 (15)	-0.0018 (17)	-0.0042 (17)
C9	0.065 (2)	0.042 (2)	0.052 (3)	-0.0191 (19)	0.008 (2)	-0.0043 (19)
C10	0.049 (2)	0.047 (2)	0.059 (3)	-0.0076 (18)	0.015 (2)	-0.0035 (19)
C11	0.0401 (17)	0.0319 (18)	0.046 (2)	-0.0004 (14)	0.0026 (16)	0.0001 (16)
C12	0.0359 (16)	0.0380 (17)	0.046 (2)	-0.0066 (14)	0.0041 (17)	0.0014 (17)
O3	0.0650 (17)	0.0355 (14)	0.0656 (18)	0.0000 (12)	0.0215 (15)	-0.0052 (14)
O1'	0.0770 (19)	0.0384 (15)	0.101 (3)	-0.0051 (14)	0.037 (2)	-0.0025 (17)
O2'	0.0670 (18)	0.0403 (15)	0.087 (2)	-0.0120 (13)	0.0299 (18)	-0.0014 (15)
C13'	0.0424 (19)	0.041 (2)	0.045 (2)	0.0014 (16)	0.0018 (18)	0.0038 (17)
C6'	0.0377 (17)	0.0398 (18)	0.037 (2)	0.0003 (15)	-0.0006 (16)	0.0032 (17)
C5'	0.049 (2)	0.048 (2)	0.038 (2)	-0.0001 (17)	0.0035 (18)	0.0046 (17)
C4'	0.063 (2)	0.0412 (18)	0.041 (2)	0.0035 (17)	0.004 (2)	-0.0007 (17)
C3'	0.066 (2)	0.0405 (19)	0.045 (2)	-0.0042 (17)	-0.001 (2)	-0.0029 (18)
C2'	0.046 (2)	0.049 (2)	0.050 (2)	-0.0092 (16)	0.0038 (18)	0.001 (2)
C1'	0.0395 (17)	0.0369 (17)	0.041 (2)	-0.0013 (14)	-0.0009 (18)	0.0038 (17)
N'	0.0452 (16)	0.0347 (15)	0.057 (2)	0.0013 (13)	0.0130 (16)	0.0070 (14)
C7'	0.0365 (17)	0.0368 (18)	0.041 (2)	-0.0046 (15)	-0.0048 (16)	-0.0014 (17)
C8'	0.0465 (19)	0.0352 (18)	0.051 (2)	0.0062 (15)	-0.0039 (17)	0.0052 (17)
C9'	0.063 (2)	0.036 (2)	0.058 (3)	0.0126 (18)	0.008 (2)	0.0006 (19)
C10'	0.051 (2)	0.048 (2)	0.067 (3)	0.0101 (18)	0.020 (2)	0.003 (2)
C11'	0.0426 (19)	0.0365 (19)	0.043 (2)	-0.0018 (15)	-0.0009 (17)	0.0003 (17)
C12'	0.0393 (17)	0.0324 (17)	0.053 (2)	0.0041 (14)	0.0028 (18)	0.0022 (17)
O3'	0.0614 (17)	0.0407 (15)	0.0662 (19)	0.0029 (12)	0.0232 (16)	0.0095 (13)

Geometric parameters (Å, °)

O1—C13	1.219 (5)	O1'—C13'	1.216 (4)
O2—C13	1.304 (4)	O2'—C13'	1.295 (4)
O2—H2O	0.8200	O2'—H2O'	0.8200
C13—C6	1.498 (5)	C13'—C6'	1.490 (5)
C6—C5	1.393 (5)	C6'—C5'	1.392 (5)
C6—C1	1.401 (5)	C6'—C1'	1.421 (5)
C5—C4	1.370 (6)	C5'—C4'	1.378 (5)
С5—Н5	0.9300	С5'—Н5'	0.9300
C4—C3	1.379 (6)	C4'—C3'	1.374 (6)
C4—H4	0.9300	C4'—H4'	0.9300
C3—C2	1.370 (5)	C3'—C2'	1.380 (6)
С3—Н3	0.9300	С3'—Н3'	0.9300
C2—C1	1.402 (5)	C2'—C1'	1.395 (5)
С2—Н2	0.9300	C2'—H2'	0.9300
C1—N	1.407 (5)	C1'—N'	1.396 (5)
N—C7	1.359 (5)	N'C7'	1.366 (5)
N—H1	0.8600	N'—H1'	0.8600
C7—C12	1.364 (5)	C7'—C12'	1.358 (5)
С7—С8	1.504 (5)	C7'—C8'	1.500 (5)
C8—C9	1.514 (6)	C8'—C9'	1.513 (6)
C8—H8A	0.9700	C8'—H8'A	0.9700
C8—H8B	0.9700	С8'—Н8'В	0.9700
C9—C10	1.524 (6)	C9'—C10'	1.515 (5)

С9—Н9А	0.9700	С9'—Н9'А	0.9700
С9—Н9В	0.9700	С9'—Н9'В	0.9700
C10—C11	1.494 (5)	C10'—C11'	1.499 (5)
C10—H10A	0.9700	C10'—H10C	0.9700
C10—H10B	0.9700	C10'—H10D	0.9700
C11—O3	1.234 (4)	C11'—O3'	1.242 (4)
C11—C12	1.433 (5)	C11'—C12'	1.425 (5)
С12—Н12	0.9300	C12'—H12'	0.9300
С13—О2—Н2О	109.5	C13'—O2'—H2O'	109.5
O1—C13—O2	123.1 (4)	O1'—C13'—O2'	122.8 (3)
O1—C13—C6	124.3 (4)	O1'—C13'—C6'	124.5 (3)
O2—C13—C6	112.6 (3)	O2'—C13'—C6'	112.7 (3)
C5—C6—C1	119.0 (4)	C5'—C6'—C1'	119.0 (3)
C5—C6—C13	118.5 (3)	C5'—C6'—C13'	119.4 (3)
C1—C6—C13	122.4 (3)	C1'—C6'—C13'	121.6 (3)
C4—C5—C6	121.8 (4)	C4'—C5'—C6'	121.6 (4)
С4—С5—Н5	119.1	C4'—C5'—H5'	119.2
С6—С5—Н5	119.1	C6'—C5'—H5'	119.2
C5—C4—C3	118.5 (4)	C3'—C4'—C5'	119.1 (4)
С5—С4—Н4	120.8	C3'—C4'—H4'	120.4
С3—С4—Н4	120.8	C5'—C4'—H4'	120.4
C2—C3—C4	121.8 (4)	C4'—C3'—C2'	121.0 (4)
С2—С3—Н3	119.1	C4'—C3'—H3'	119.5
С4—С3—Н3	119.1	C2'—C3'—H3'	119.5
C3—C2—C1	119.9 (4)	C3'—C2'—C1'	120.8 (4)
С3—С2—Н2	120.0	C3'—C2'—H2'	119.6
C1—C2—H2	120.0	C1'—C2'—H2'	119.6
C6-C1-C2	118.9 (4)	C2'—C1'—N'	122.4 (3)
C6—C1—N	118.7 (3)	C2'—C1'—C6'	118.3 (3)
C2-C1-N	122.3 (3)	N'—C1'—C6'	119.2 (3)
C7—N—C1	131.6 (3)	C7'—N'—C1'	130.7 (3)
C7—N—H1	114.2	C7'—N'—H1'	114.6
C1—N—H1	114.2	C1'—N'—H1'	114.6
N	125.9 (3)	C12'—C7'—N'	126.0 (3)
N	113.2 (3)	C12'—C7'—C8'	120.7(3)
C12—C7—C8	121.0 (3)	N'—C7'—C8'	113.3 (3)
C7—C8—C9	113.6 (3)	C7'-C8'-C9'	112.9 (3)
С7—С8—Н8А	108.8	C7'—C8'—H8'A	109.0
С9—С8—Н8А	108.8	C9'—C8'—H8'A	109.0
С7—С8—Н8В	108.8	C7'—C8'—H8'B	109.0
С9—С8—Н8В	108.8	C9'—C8'—H8'B	109.0
H8A—C8—H8B	107.7	H8'A—C8'—H8'B	107.8
C8—C9—C10	109.7 (4)	C8'—C9'—C10'	109.3 (4)
С8—С9—Н9А	109.7	C8'—C9'—H9'A	109.8
C10—C9—H9A	109.7	C10'—C9'—H9'A	109.8
С8—С9—Н9В	109.7	С8'—С9'—Н9'В	109.8
С10—С9—Н9В	109.7	С10'—С9'—Н9'В	109.8
H9A—C9—H9B	108.2	Н9'А—С9'—Н9'В	108.3
C11—C10—C9	112.0 (3)	C11'—C10'—C9'	112.0 (3)

C11-C10-H10A	109.2	C11'—C10'—H10C	109.2
C9—C10—H10A	109.2	C9'—C10'—H10C	109.2
C11—C10—H10B	109.2	C11'-C10'-H10D	109.2
C9—C10—H10B	109.2	C9'—C10'—H10D	109.2
H10A-C10-H10B	107.9	H10C-C10'-H10D	107.9
O3—C11—C12	122.3 (3)	O3'—C11'—C12'	122.3 (3)
O3—C11—C10	118.6 (3)	O3'—C11'—C10'	119.2 (3)
C12-C11-C10	119.0 (3)	C12'—C11'—C10'	118.4 (3)
C7—C12—C11	121.4 (3)	C7'—C12'—C11'	122.0 (3)
C7—C12—H12	119.3	C7'—C12'—H12'	119.0
C11—C12—H12	119.3	C11'—C12'—H12'	119.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2O…O3'	0.82	1.81	2.562 (4)	151
N—H1…O1	0.86	1.98	2.665 (4)	136
O2'—H2O'···O3 ⁱ	0.82	1.78	2.562 (4)	160
N'—H1'…O1'	0.86	1.98	2.659 (4)	135
Symmetry codes: (i) $x, y+1, z$.				

